Non-Probability Sampling
Nonprobability sampling is a sampling technique in which some units of the
population have zero chance of selection or where the probability of selection cannot be
accurately determined. Typically, units are selected based on certain non-random criteria, such
as quota or convenience. Because selection is non-random, nonprobability sampling does not
allow the estimation of sampling errors, and may be subjected to a sampling bias. Therefore,
information from a sample cannot be generalized back to the population. Types of nonprobability
sampling techniques include:
Convenience sampling. Also called accidental or opportunity sampling, this is a technique in
which a sample is drawn from that part of the population that is close to hand, readily available, or
convenient. For instance, if you stand outside a shopping center and hand out questionnaire surveys to
people or interview them as they walk in, the sample of respondents you will obtain will be a
convenience sample. This is a non-probability sample because you are systematically excluding all
people who shop at other shopping centers. The opinions that you would get from your chosen sample
may reflect the unique characteristics of this shopping center such as the nature of its stores (e.g., high
end-stores will attract a more affluent demographic), the demographic profile of its patrons, or its
location (e.g., a shopping center close to a university will attract primarily university students with
unique purchase habits), and therefore may not be representative of the opinions of the shopper
population at large. Hence, the scientific generalizability of such observations will be very limited. Other
examples of convenience sampling are sampling students registered in a certain class or sampling
patients arriving at a certain medical clinic. This type of sampling is most useful for pilot testing, where
the goal is instrument testing or measurement validation rather than obtaining generalizable inferences.
Quota sampling. In this technique, the population is segmented into mutuallyexclusive
subgroups (just as in stratified sampling), and then a non-random set of observations
is chosen from each subgroup to meet a predefined quota. In proportional quota sampling,
the proportion of respondents in each subgroup should match that of the population. For
instance, if the American population consists of 70% Caucasians, 15% Hispanic-Americans, and
13% African-Americans, and you wish to understand their voting preferences in an sample of
98 people, you can stand outside a shopping center and ask people their voting preferences.
But you will have to stop asking Hispanic-looking people when you have 15 responses from that
subgroup (or African-Americans when you have 13 responses) even as you continue sampling
other ethnic groups, so that the ethnic composition of your sample matches that of the general
American population. Non-proportional quota sampling is less restrictive in that you don’t
have to achieve a proportional representation, but perhaps meet a minimum size in each
subgroup. In this case, you may decide to have 50 respondents from each of the three ethnic
subgroups (Caucasians, Hispanic-Americans, and African-Americans), and stop when your
quota for each subgroup is reached. Neither type of quota sampling will be representative of
the American population, since depending on whether your study was conducted in a shopping
center in New York or Kansas, your results may be entirely different. The non-proportional
technique is even less representative of the population but may be useful in that it allows
capturing the opinions of small and underrepresented groups through oversampling.
Expert sampling. This is a technique where respondents are chosen in a non-random
manner based on their expertise on the phenomenon being studied. For instance, in order to
understand the impacts of a new governmental policy such as the Sarbanes-Oxley Act, you can
sample an group of corporate accountants who are familiar with this act. The advantage of this
approach is that since experts tend to be more familiar with the subject matter than nonexperts,
opinions from a sample of experts are more credible than a sample that includes both
70 | S o c i a l S c i e n c e R e s e a r c h
experts and non-experts, although the findings are still not generalizable to the overall
population at large.
Snowball sampling. In snowball sampling, you start by identifying a few respondents
that match the criteria for inclusion in your study, and then ask them to recommend others they
know who also meet your selection criteria. For instance, if you wish to survey computer
network administrators and you know of only one or two such people, you can start with them
and ask them to recommend others who also do network administration. Although this method
hardly leads to representative samples, it may sometimes be the only way to reach hard-toreach
populations or when no sampling frame is available.
Statistics of Sampling
In the preceding sections, we introduced terms such as population parameter, sample
statistic, and sampling bias. In this section, we will try to understand what these terms mean
and how they are related to each other.
When you measure a certain observation from a given unit, such as a person’s response
to a Likert-scaled item, that observation is called a response (see Figure 8.2). In other words, a
response is a measurement value provided by a sampled unit. Each respondent will give you
different responses to different items in an instrument. Responses from different respondents
to the same item or observation can be graphed into a frequency distribution based on their
frequency of occurrences. For a large number of responses in a sample, this frequency
distribution tends to resemble a bell-shaped curve called a normal distribution, which can be
used to estimate overall characteristics of the entire sample, such as sample mean (average of
all observations in a sample) or standard deviation (variability or spread of observations in a
sample). These sample estimates are called sample statistics (a “statistic” is a value that is
estimated from observed data). Populations also have means and standard deviations that
could be obtained if we could sample the entire population. However, since the entire
population can never be sampled, population characteristics are always unknown, and are
called population parameters (and not “statistic” because they are not statistically estimated
from data). Sample statistics may differ from population parameters if the sample is not
perfectly representative of the population; the difference between the two is called sampling
error. Theoretically, if we could gradually increase the sample size so that the sample
approaches closer and closer to the population, then sampling error will decrease and a sample
statistic will increasingly approximate the corresponding population parameter.
If a sample is truly representative of the population, then the estimated sample statistics
should be identical to corresponding theoretical population parameters. How do we know if the
sample statistics are at least reasonably close to the population parameters? Here, we need to
understand the concept of a sampling distribution. Imagine that you took three different
random samples from a given population, as shown in Figure 8.3, and for each sample, you
derived sample statistics such as sample mean and standard deviation. If each random sample
was truly representative of the population, then your three sample means from the three
random samples will be identical (and equal to the population parameter), and the variability in
sample means will be zero. But this is extremely unlikely, given that each random sample will
likely constitute a different subset of the population, and hence, their means may be slightly
different from each other. However, you can take these three sample means and plot a
frequency histogram of sample means. If the number of such samples increases from three to
10 to 100, the frequency histogram becomes a sampling distribution.
Add Your Gadget Here
HIGHLIGHT OF THE WEEK
-
Survey Research Survey research a research method involving the use of standardized questionnaires or interviews to collect data about peop...
-
Inter-rater reliability. Inter-rater reliability, also called inter-observer reliability, is a measure of consistency between two or more i...
-
discriminant validity is exploratory factor analysis. This is a data reduction technique which aggregates a given set of items to a smalle...
-
can estimate parameters of this line, such as its slope and intercept from the GLM. From highschool algebra, recall that straight lines can...
-
Positivist Case Research Exemplar Case research can also be used in a positivist manner to test theories or hypotheses. Such studies are ra...
-
Quantitative Analysis: Descriptive Statistics Numeric data collected in a research project can be analyzed quantitatively using statistical...
-
Probability Sampling Probability sampling is a technique in which every unit in the population has a chance (non-zero probability) of being...
-
Experimental Research Experimental research, often considered to be the “gold standard” in research designs, is one of the most rigorous of...
-
Bivariate Analysis Bivariate analysis examines how two variables are related to each other. The most common bivariate statistic is the biva...
-
Case Research Case research, also called case study, is a method of intensively studying a phenomenon over time within its natural setting ...
Sunday, 13 March 2016
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment