discriminant validity is exploratory factor analysis. This is a data reduction technique which
aggregates a given set of items to a smaller set of factors based on the bivariate correlation
structure discussed above using a statistical technique called principal components analysis.
These factors should ideally correspond to the underling theoretical constructs that we are
trying to measure. The general norm for factor extraction is that each extracted factor should
have an eigenvalue greater than 1.0. The extracted factors can then be rotated using orthogonal
or oblique rotation techniques, depending on whether the underlying constructs are expected
to be relatively uncorrelated or correlated, to generate factor weights that can be used to
aggregate the individual items of each construct into a composite measure. For adequate
convergent validity, it is expected that items belonging to a common construct should exhibit
factor loadings of 0.60 or higher on a single factor (called same-factor loadings), while for
discriminant validity, these items should have factor loadings of 0.30 or less on all other factors
(cross-factor loadings), as shown in rotated factor matrix example in Table 7.2. A more
sophisticated technique for evaluating convergent and discriminant validity is the multi-trait
multi-method (MTMM) approach. This technique requires measuring each construct (trait)
using two or more different methods (e.g., survey and personal observation, or perhaps survey
of two different respondent groups such as teachers and parents for evaluating academic
quality). This is an onerous and relatively less popular approach, and is therefore not discussed
here.
Criterion-related validity can also be assessed based on whether a given measure relate
well with a current or future criterion, which are respectively called concurrent and predictive
validity. Predictive validity is the degree to which a measure successfully predicts a future
outcome that it is theoretically expected to predict. For instance, can standardized test scores
(e.g., Scholastic Aptitude Test scores) correctly predict the academic success in college (e.g., as
measured by college grade point average)? Assessing such validity requires creation of a
“nomological network” showing how constructs are theoretically related to each other.
Concurrent validity examines how well one measure relates to other concrete criterion that is
presumed to occur simultaneously. For instance, do students’ scores in a calculus class
S c a l e R e l i a b i l i t y a n d V a l i d i t y | 61
correlate well with their scores in a linear algebra class? These scores should be related
concurrently because they are both tests of mathematics. Unlike convergent and discriminant
validity, concurrent and predictive validity is frequently ignored in empirical social science
research.
Table 7.2. Exploratory factor analysis for convergent and discriminant validity
Theory of Measurement
Now that we know the different kinds of reliability and validity, let us try to synthesize
our understanding of reliability and validity in a mathematical manner using classical test
theory, also called true score theory. This is a psychometric theory that examines how
measurement works, what it measures, and what it does not measure. This theory postulates
that every observation has a true score T that can be observed accurately if there were no errors
in measurement. However, the presence of measurement errors E results in a deviation of the
observed score X from the true score as follows:
X = T + E
Observed score True score Error
Across a set of observed scores, the variance of observed and true scores can be related using a
similar equation:
var(X) = var(T) + var(E)
The goal of psychometric analysis is to estimate and minimize if possible the error variance
var(E), so that the observed score X is a good measure of the true score T.
Measurement errors can be of two types: random error and systematic error. Random
error is the error that can be attributed to a set of unknown and uncontrollable external factors
that randomly influence some observations but not others. As an example, during the time of
measurement, some respondents may be in a nicer mood than others, which may influence how
they respond to the measurement items. For instance, respondents in a nicer mood may
respond more positively to constructs like self-esteem, satisfaction, and happiness than those
who are in a poor mood. However, it is not possible to anticipate which subject is in what type
of mood or control for the effect of mood in research studies. Likewise, at an organizational
level, if we are measuring firm performance, regulatory or environmental changes may affect
the performance of some firms in an observed sample but not others. Hence, random error is
considered to be “noise” in measurement and generally ignored
Add Your Gadget Here
HIGHLIGHT OF THE WEEK
-
Survey Research Survey research a research method involving the use of standardized questionnaires or interviews to collect data about peop...
-
Inter-rater reliability. Inter-rater reliability, also called inter-observer reliability, is a measure of consistency between two or more i...
-
discriminant validity is exploratory factor analysis. This is a data reduction technique which aggregates a given set of items to a smalle...
-
can estimate parameters of this line, such as its slope and intercept from the GLM. From highschool algebra, recall that straight lines can...
-
Positivist Case Research Exemplar Case research can also be used in a positivist manner to test theories or hypotheses. Such studies are ra...
-
Quantitative Analysis: Descriptive Statistics Numeric data collected in a research project can be analyzed quantitatively using statistical...
-
Probability Sampling Probability sampling is a technique in which every unit in the population has a chance (non-zero probability) of being...
-
Experimental Research Experimental research, often considered to be the “gold standard” in research designs, is one of the most rigorous of...
-
Bivariate Analysis Bivariate analysis examines how two variables are related to each other. The most common bivariate statistic is the biva...
-
Case Research Case research, also called case study, is a method of intensively studying a phenomenon over time within its natural setting ...
Sunday, 13 March 2016
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment