Conducting Case Research
Most case research studies tend to be interpretive in nature. Interpretive case research
is an inductive technique where evidence collected from one or more case sites is systematically
analyzed and synthesized to allow concepts and patterns to emerge for the purpose of building
new theories or expanding existing ones. Eisenhardt (1989)10 propose a “roadmap” for
building theories from case research, a slightly modified version of which is described below.
For positivist case research, some of the following stages may need to be rearranged or
modified; however sampling, data collection, and data analytic techniques should generally
remain the same.
Define research questions. Like any other scientific research, case research must also
start with defining research questions that are theoretically and practically interesting, and
identifying some intuitive expectations about possible answers to those research questions or
preliminary constructs to guide initial case design. In positivist case research, the preliminary
constructs are based on theory, while no such theory or hypotheses should be considered ex
ante in interpretive research. These research questions and constructs may be changed in
interpretive case research later on, if needed, but not in positivist case research.
Select case sites. The researcher should use a process of “theoretical sampling” (not
random sampling) to identify case sites. In this approach, case sites are chosen based on
theoretical, rather than statistical, considerations, for instance, to replicate previous cases, to
extend preliminary theories, or to fill theoretical categories or polar types. Care should be
taken to ensure that the selected sites fit the nature of research questions, minimize extraneous
variance or noise due to firm size, industry effects, and so forth, and maximize variance in the
dependent variables of interest. For instance, if the goal of the research is to examine how some
firms innovate better than others, the researcher should select firms of similar size within the
10 Eisenhardt, K. M. (1989). “Building Theories from Case Research,” Academy of Management Review
(14:4), 532-550.
96 | S o c i a l S c i e n c e R e s e a r c h
same industry to reduce industry or size effects, and select some more innovative and some less
innovative firms to increase variation in firm innovation. Instead of cold-calling or writing to a
potential site, it is better to contact someone at executive level inside each firm who has the
authority to approve the project or someone who can identify a person of authority. During
initial conversations, the researcher should describe the nature and purpose of the project, any
potential benefits to the case site, how the collected data will be used, the people involved in
data collection (other researchers, research assistants, etc.), desired interviewees, and the
amount of time, effort, and expense required of the sponsoring organization. The researcher
must also assure confidentiality, privacy, and anonymity of both the firm and the individual
respondents.
Create instruments and protocols. Since the primary mode of data collection in case
research is interviews, an interview protocol should be designed to guide the interview process.
This is essentially a list of questions to be asked. Questions may be open-ended (unstructured)
or closed-ended (structured) or a combination of both. The interview protocol must be strictly
followed, and the interviewer must not change the order of questions or skip any question
during the interview process, although some deviations are allowed to probe further into
respondent’s comments that are ambiguous or interesting. The interviewer must maintain a
neutral tone, not lead respondents in any specific direction, say by agreeing or disagreeing with
any response. More detailed interviewing techniques are discussed in the chapter on surveys.
In addition, additional sources of data, such as internal documents and memorandums, annual
reports, financial statements, newspaper articles, and direct observations should be sought to
supplement and validate interview data.
Select respondents. Select interview respondents at different organizational levels,
departments, and positions to obtain divergent perspectives on the phenomenon of interest. A
random sampling of interviewees is most preferable; however a snowball sample is acceptable,
as long as a diversity of perspectives is represented in the sample. Interviewees must be
selected based on their personal involvement with the phenomenon under investigation and
their ability and willingness to answer the researcher’s questions accurately and adequately,
and not based on convenience or access.
Start data collection. It is usually a good idea to electronically record interviews for
future reference. However, such recording must only be done with the interviewee’s consent.
Even when interviews are being recorded, the interviewer should take notes to capture
important comments or critical observations, behavioral responses (e.g., respondent’s body
language), and the researcher’s personal impressions about the respondent and his/her
comments. After each interview is completed, the entire interview should be transcribed
verbatim into a text document for analysis.
Conduct within-case data analysis. Data analysis may follow or overlap with data
collection. Overlapping data collection and analysis has the advantage of adjusting the data
collection process based on themes emerging from data analysis, or to further probe into these
themes. Data analysis is done in two stages. In the first stage (within-case analysis), the
researcher should examine emergent concepts separately at each case site and patterns
between these concepts to generate an initial theory of the problem of interest. The researcher
can interview data subjectively to “make sense” of the research problem in conjunction with
using her personal observations or experience at the case site. Alternatively, a coding strategy
such as Glasser and Strauss’ (1967) grounded theory approach, using techniques such as open
coding, axial coding, and selective coding, may be used to derive a chain of evidence and
C a s e R e s e a r c h | 97
inferences. These techniques are discussed in detail in a later chapter. Homegrown techniques,
such as graphical representation of data (e.g., network diagram) or sequence analysis (for
longitudinal data) may also be used. Note that there is no predefined way of analyzing the
various types of case data, and the data analytic techniques can be modified to fit the nature of
the research project.
Conduct cross-case analysis. Multi-site case research requires cross-case analysis as the
second stage of data analysis. In such analysis, the researcher should look for similar concepts
and patterns between different case sites, ignoring contextual differences that may lead to
idiosyncratic conclusions. Such patterns may be used for validating the initial theory, or for
refining it (by adding or dropping concepts and relationships) to develop a more inclusive and
generalizable theory. This analysis may take several forms. For instance, the researcher may
select categories (e.g., firm size, industry, etc.) and look for within-group similarities and
between-group differences (e.g., high versus low performers, innovators versus laggards).
Alternatively, she can compare firms in a pair-wise manner listing similarities and differences
across pairs of firms.
Build and test hypotheses. Based on emergent concepts and themes that are
generalizable across case sites, tentative hypotheses are constructed. These hypotheses should
be compared iteratively with observed evidence to see if they fit the observed data, and if not,
the constructs or relationships should be refined. Also the researcher should compare the
emergent constructs and hypotheses with those reported in the prior literature to make a case
for their internal validity and generalizability. Conflicting findings must not be rejected, but
rather reconciled using creative thinking to generate greater insight into the emergent theory.
When further iterations between theory and data yield no new insights or changes in the
existing theory, “theoretical saturation” is reached and the theory building process is complete.
Write case research report. In writing the report, the researcher should describe very
clearly the detailed process used for sampling, data collection, data analysis, and hypotheses
development, so that readers can independently assess the reasonableness, strength, and
consistency of the reported inferences. A high level of clarity in research methods is needed to
ensure that the findings are not biased by the researcher’s preconceptions.
Interpretive Case Research Exemplar
Perhaps the best way to learn about interpretive case research is to examine an
illustrative example. One such example is Eisenhardt’s (1989)11 study of how executives make
decisions in high-velocity environments (HVE). Readers are advised to read the original paper
published in Academy of Management Journal before reading the synopsis in this chapter. In
this study, Eisenhardt examined how executive teams in some HVE firms make fast decisions,
while those in other firms cannot, and whether faster decisions improve or worsen firm
performance in such environments. HVE was defined as one where demand, competition, and
technology changes so rapidly and discontinuously that the information available is often
inaccurate, unavailable or obsolete. The implicit assumptions were that (1) it is hard to make
fast decisions with inadequate information in HVE, and (2) fast decisions may not be efficient
and may result in poor firm performance.
Add Your Gadget Here
HIGHLIGHT OF THE WEEK
-
Survey Research Survey research a research method involving the use of standardized questionnaires or interviews to collect data about peop...
-
Inter-rater reliability. Inter-rater reliability, also called inter-observer reliability, is a measure of consistency between two or more i...
-
discriminant validity is exploratory factor analysis. This is a data reduction technique which aggregates a given set of items to a smalle...
-
can estimate parameters of this line, such as its slope and intercept from the GLM. From highschool algebra, recall that straight lines can...
-
Positivist Case Research Exemplar Case research can also be used in a positivist manner to test theories or hypotheses. Such studies are ra...
-
Quantitative Analysis: Descriptive Statistics Numeric data collected in a research project can be analyzed quantitatively using statistical...
-
Probability Sampling Probability sampling is a technique in which every unit in the population has a chance (non-zero probability) of being...
-
Experimental Research Experimental research, often considered to be the “gold standard” in research designs, is one of the most rigorous of...
-
Bivariate Analysis Bivariate analysis examines how two variables are related to each other. The most common bivariate statistic is the biva...
-
Case Research Case research, also called case study, is a method of intensively studying a phenomenon over time within its natural setting ...
Sunday, 13 March 2016
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment