Reviewing the prior literature on executive decision-making, Eisenhardt found several
patterns, although none of these patterns were specific to high-velocity environments. The
literature suggested that in the interest of expediency, firms that make faster decisions obtain
input from fewer sources, consider fewer alternatives, make limited analysis, restrict user
participation in decision-making, centralize decision-making authority, and has limited internal
conflicts. However, Eisenhardt contended that these views may not necessarily explain how
decision makers make decisions in high-velocity environments, where decisions must be made
quickly and with incomplete information, while maintaining high decision quality.
To examine this phenomenon, Eisenhardt conducted an inductive study of eight firms in
the personal computing industry. The personal computing industry was undergoing dramatic
changes in technology with the introduction of the UNIX operating system, RISC architecture,
and 64KB random access memory in the 1980’s, increased competition with the entry of IBM
into the personal computing business, and growing customer demand with double-digit
demand growth, and therefore fit the profile of the high-velocity environment. This was a
multiple case design with replication logic, where each case was expected to confirm or
disconfirm inferences from other cases. Case sites were selected based on their access and
proximity to the researcher; however, all of these firms operated in the high-velocity personal
computing industry in California’s Silicon Valley area. The collocation of firms in the same
industry and the same area ruled out any “noise” or variance in dependent variables (decision
speed or performance) attributable to industry or geographic differences.
The study employed an embedded design with multiple levels of analysis: decision
(comparing multiple strategic decisions within each firm), executive teams (comparing
different teams responsible for strategic decisions), and the firm (overall firm performance).
Data was collected from five sources:
Initial interviews with Chief Executive Officers: CEOs were asked questions about their
firm’s competitive strategy, distinctive competencies, major competitors, performance,
and recent/ongoing major strategic decisions. Based on these interviews, several
strategic decisions were selected in each firm for further investigation. Four criteria
were used to select decisions: (1) the decisions involved the firm’s strategic positioning,
(2) the decisions had high stakes, (3) the decisions involved multiple functions, and (4)
the decisions were representative of strategic decision-making process in that firm.
Interviews with divisional heads: Each divisional head was asked sixteen open-ended
questions, ranging from their firm’s competitive strategy, functional strategy, top
management team members, frequency and nature of interaction with team, typical
decision making processes, how each of the previously identified decision was made,
and how long it took them to make those decisions. Interviews lasted between 1.5 and 2
hours, and sometimes extended to 4 hours. To focus on facts and actual events rather
than respondents’ perceptions or interpretations, a “courtroom” style questioning was
employed, such as when did this happen, what did you do, etc. Interviews were
conducted by two people, and the data was validated by cross-checking facts and
impressions made by the interviewer and note-taker. All interview data was recorded,
however notes were also taken during each interview, which ended with the
interviewer’s overall impressions. Using a “24-hour rule”, detailed field notes were
completed within 24 hours of the interview, so that some data or impressions were not
lost to recall.
C a s e R e s e a r c h | 99
Questionnaires: Executive team members at each firm were completed a survey
questionnaire that captured quantitative data on the extent of conflict and power
distribution in their firm.
Secondary data: Industry reports and internal documents such as demographics of the
executive teams (responsible for strategic decisions), financial performance of firms,
and so forth, were examined.
Personal observation: Lastly, the researcher attended a 1-day strategy session and a
weekly executive meeting at two firms in her sample.
Data analysis involved a combination of quantitative and qualitative techniques.
Quantitative data on conflict and power were analyzed for patterns across firms/decisions.
Qualitative interview data was combined into decision climate profiles, using profile traits (e.g.,
impatience) mentioned by more than one executive. For within-case analysis, decision stories
were created for each strategic decision by combining executive accounts of the key decision
events into a timeline. For cross-case analysis, pairs of firms were compared for similarities
and differences, categorized along variables of interest such as decision speed and firm
performance. Based on these analyses, tentative constructs and propositions were derived
inductively from each decision story within firm categories. Each decision case was revisited to
confirm the proposed relationships. The inferred propositions were compared with findings
from the existing literature to reconcile examine differences with the extant literature and to
generate new insights from the case findings. Finally, the validated propositions were
synthesized into an inductive theory of strategic decision-making by firms in high-velocity
environments.
Inferences derived from this multiple case research contradicted several decisionmaking
patterns expected from the existing literature. First, fast decision makers in highvelocity
environments used more information, and not less information as suggested by the
previous literature. However, these decision makers used more real-time information (an
insight not available from prior research), which helped them identify and respond to problems,
opportunities, and changing circumstances faster. Second, fast decision makers examined more
(not fewer) alternatives. However, they considered these multiple alternatives in a
simultaneous manner, while slower decision makers examined fewer alternatives in a sequential
manner. Third, fast decision makers did not centralize decision making or restrict inputs from
others, as the literature suggested. Rather, these firms used a two-tiered decision process in
which experienced counselors were asked for inputs in the first stage, following by a rapid
comparison and decision selection in the second stage. Fourth, fast decision makers did not
have less conflict, as expected from the literature, but employed better conflict resolution
techniques to reduce conflict and improve decision-making speed. Finally, fast decision makers
exhibited superior firm performance by virtue of their built-in cognitive, emotional, and
political processes that led to rapid closure of major decisions
Add Your Gadget Here
HIGHLIGHT OF THE WEEK
-
Survey Research Survey research a research method involving the use of standardized questionnaires or interviews to collect data about peop...
-
Inter-rater reliability. Inter-rater reliability, also called inter-observer reliability, is a measure of consistency between two or more i...
-
discriminant validity is exploratory factor analysis. This is a data reduction technique which aggregates a given set of items to a smalle...
-
can estimate parameters of this line, such as its slope and intercept from the GLM. From highschool algebra, recall that straight lines can...
-
Positivist Case Research Exemplar Case research can also be used in a positivist manner to test theories or hypotheses. Such studies are ra...
-
Quantitative Analysis: Descriptive Statistics Numeric data collected in a research project can be analyzed quantitatively using statistical...
-
Probability Sampling Probability sampling is a technique in which every unit in the population has a chance (non-zero probability) of being...
-
Experimental Research Experimental research, often considered to be the “gold standard” in research designs, is one of the most rigorous of...
-
Bivariate Analysis Bivariate analysis examines how two variables are related to each other. The most common bivariate statistic is the biva...
-
Case Research Case research, also called case study, is a method of intensively studying a phenomenon over time within its natural setting ...
Sunday, 13 March 2016
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment