Factorial Designs
Two-group designs are inadequate if your research requires manipulation of two or
more independent variables (treatments). In such cases, you would need four or higher-group
designs. Such designs, quite popular in experimental research, are commonly called factorial
designs. Each independent variable in this design is called a factor, and each sub-division of a
factor is called a level. Factorial designs enable the researcher to examine not only the
individual effect of each treatment on the dependent variables (called main effects), but also
their joint effect (called interaction effects).
The most basic factorial design is a 2 x 2 factorial design, which consists of two
treatments, each with two levels (such as high/low or present/absent). For instance, let’s say
that you want to compare the learning outcomes of two different types of instructional
techniques (in-class and online instruction), and you also want to examine whether these
effects vary with the time of instruction (1.5 or 3 hours per week). In this case, you have two
factors: instructional type and instructional time; each with two levels (in-class and online for
instructional type, and 1.5 and 3 hours/week for instructional time), as shown in Figure 8.1. If
you wish to add a third level of instructional time (say 6 hours/week), then the second factor
will consist of three levels and you will have a 2 x 3 factorial design. On the other hand, if you
wish to add a third factor such as group work (present versus absent), you will have a 2 x 2 x 2
factorial design. In this notation, each number represents a factor, and the value of each factor
represents the number of levels in that factor.
Figure 10.4. 2 x 2 factorial design
Factorial designs can also be depicted using a design notation, such as that shown on the
right panel of Figure 10.4. R represents random assignment of subjects to treatment groups, X
represents the treatment groups themselves (the subscripts of X represents the level of each
factor), and O represent observations of the dependent variable. Notice that the 2 x 2 factorial
design will have four treatment groups, corresponding to the four combinations of the two
levels of each factor. Correspondingly, the 2 x 3 design will have six treatment groups, and the 2
x 2 x 2 design will have eight treatment groups. As a rule of thumb, each cell in a factorial
design should have a minimum sample size of 20 (this estimate is derived from Cohen’s power
calculations based on medium effect sizes). So a 2 x 2 x 2 factorial design requires a minimum
total sample size of 160 subjects, with at least 20 subjects in each cell. As you can see, the cost
88 | S o c i a l S c i e n c e R e s e a r c h
of data collection can increase substantially with more levels or factors in your factorial design.
Sometimes, due to resource constraints, some cells in such factorial designs may not receive any
treatment at all, which are called incomplete factorial designs. Such incomplete designs hurt our
ability to draw inferences about the incomplete factors.
In a factorial design, a main effect is said to exist if the dependent variable shows a
significant difference between multiple levels of one factor, at all levels of other factors. No
change in the dependent variable across factor levels is the null case (baseline), from which
main effects are evaluated. In the above example, you may see a main effect of instructional
type, instructional time, or both on learning outcomes. An interaction effect exists when the
effect of differences in one factor depends upon the level of a second factor. In our example, if
the effect of instructional type on learning outcomes is greater for 3 hours/week of
instructional time than for 1.5 hours/week, then we can say that there is an interaction effect
between instructional type and instructional time on learning outcomes. Note that the presence
of interaction effects dominate and make main effects irrelevant, and it is not meaningful to
interpret main effects if interaction effects are significant.
Hybrid Experimental Designs
Hybrid designs are those that are formed by combining features of more established
designs. Three such hybrid designs are randomized bocks design, Solomon four-group design,
and switched replications design.
Randomized block design. This is a variation of the posttest-only or pretest-posttest
control group design where the subject population can be grouped into relatively homogeneous
subgroups (called blocks) within which the experiment is replicated. For instance, if you want
to replicate the same posttest-only design among university students and full-time working
professionals (two homogeneous blocks), subjects in both blocks are randomly split between
treatment group (receiving the same treatment) or control group (see Figure 10.5). The
purpose of this design is to reduce the “noise” or variance in data that may be attributable to
differences between the blocks so that the actual effect of interest can be detected more
accurately.
Figure 10.5. Randomized blocks design
Solomon four-group design. In this design, the sample is divided into two treatment
groups and two control groups. One treatment group and one control group receive the pretest,
and the other two groups do not. This design represents a combination of posttest-only and
pretest-posttest control group design, and is intended to test for the potential biasing effect of
pretest measurement on posttest measures that tends to occur in pretest-posttest designs but
not in posttest only designs. The design notation is shown in Figure 10.6.
E x p e r i m e n t a l R e s e a r c h | 89
Figure 10.6. Solomon four-group design
Switched replication design. This is a two-group design implemented in two phases
with three waves of measurement. The treatment group in the first phase serves as the control
group in the second phase, and the control group in the first phase becomes the treatment
group in the second phase, as illustrated in Figure 10.7. In other words, the original design is
repeated or replicated temporally with treatment/control roles switched between the two
groups. By the end of the study, all participants will have received the treatment either during
the first or the second phase. This design is most feasible in organizational contexts where
organizational programs (e.g., employee training) are implemented in a phased manner or are
repeated at regular intervals.
Figure 10.7. Switched replication design
Quasi-Experimental Designs
Quasi-experimental designs are almost identical to true experimental designs, but
lacking one key ingredient: random assignment. For instance, one entire class section or one
organization is used as the treatment group, while another section of the same class or a
different organization in the same industry is used as the control group. This lack of random
assignment potentially results in groups that are non-equivalent, such as one group possessing
greater mastery of a certain content than the other group, say by virtue of having a better
teacher in a previous semester, which introduces the possibility of selection bias. Quasiexperimental
designs are therefore inferior to true experimental designs in interval validity due
to the presence of a variety of selection related threats such as selection-maturation threat (the
treatment and control groups maturing at different rates), selection-history threat (the
treatment and control groups being differentially impact by extraneous or historical events),
selection-regression threat (the treatment and control groups regressing toward the mean
between pretest and posttest at different rates), selection-instrumentation threat (the
treatment and control groups responding differently to the measurement), selection-testing
(the treatment and control groups responding differently to the pretest), and selectionmortality
(the treatment and control groups demonstrating differential dropout rates). Given
these selection threats, it is generally preferable to avoid quasi-experimental designs to the
greatest extent possible.
Many true experimental designs can be converted to quasi-experimental designs by
omitting random assignment. For instance, the quasi-equivalent version of pretest-posttest
control group design is called nonequivalent groups design (NEGD), as shown in Figure 10.8,
with random assignment R replaced by non-equivalent (non-random) assignment N. Likewise,
90 | S o c i a l S c i e n c e R e s e a r c h
the quasi-experimental version of switched replication design is called non-equivalent
switched replication design (see Figure 10.9).
Figure 10.8. NEGD design
Figure 10.9. Non-equivalent switched replication design
In addition, there are quite a few unique non-equivalent designs without corresponding
true experimental design cousins. Some of the more useful of these designs are discussed next.
Regression-discontinuity (RD) design. This is a non-equivalent pretest-posttest
design where subjects are assigned to treatment or control group based on a cutoff score on a
preprogram measure. For instance, patients who are severely ill may be assigned to a
treatment group to test the efficacy of a new drug or treatment protocol and those who are
mildly ill are assigned to the control group. In another example, students who are lagging
behind on standardized test scores may be selected for a remedial curriculum program
intended to improve their performance, while those who score high on such tests are not
selected from the remedial program. The design notation can be represented as follows, where
C represents the cutoff score:
Add Your Gadget Here
HIGHLIGHT OF THE WEEK
-
Survey Research Survey research a research method involving the use of standardized questionnaires or interviews to collect data about peop...
-
Inter-rater reliability. Inter-rater reliability, also called inter-observer reliability, is a measure of consistency between two or more i...
-
discriminant validity is exploratory factor analysis. This is a data reduction technique which aggregates a given set of items to a smalle...
-
can estimate parameters of this line, such as its slope and intercept from the GLM. From highschool algebra, recall that straight lines can...
-
Positivist Case Research Exemplar Case research can also be used in a positivist manner to test theories or hypotheses. Such studies are ra...
-
Quantitative Analysis: Descriptive Statistics Numeric data collected in a research project can be analyzed quantitatively using statistical...
-
Probability Sampling Probability sampling is a technique in which every unit in the population has a chance (non-zero probability) of being...
-
Experimental Research Experimental research, often considered to be the “gold standard” in research designs, is one of the most rigorous of...
-
Bivariate Analysis Bivariate analysis examines how two variables are related to each other. The most common bivariate statistic is the biva...
-
Case Research Case research, also called case study, is a method of intensively studying a phenomenon over time within its natural setting ...
Sunday, 13 March 2016
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment