Systematic error is an error that is introduced by factors that systematically affect all
observations of a construct across an entire sample in a systematic manner. In our previous
example of firm performance, since the recent financial crisis impacted the performance of
financial firms disproportionately more than any other type of firms such as manufacturing or
service firms, if our sample consisted only of financial firms, we may expect a systematic
reduction in performance of all firms in our sample due to the financial crisis. Unlike random
error, which may be positive negative, or zero, across observation in a sample, systematic
errors tends to be consistently positive or negative across the entire sample. Hence, systematic
error is sometimes considered to be “bias” in measurement and should be corrected.
Since an observed score may include both random and systematic errors, our true score
equation can be modified as:
X = T + Er + Es
where Er and Es represent random and systematic errors respectively. The statistical impact of
these errors is that random error adds variability (e.g., standard deviation) to the distribution
of an observed measure, but does not affect its central tendency (e.g., mean), while systematic
error affects the central tendency but not the variability, as shown in Figure 7.3.
Figure 7.3. Effects of random and systematic errors
What does random and systematic error imply for measurement procedures? By
increasing variability in observations, random error reduces the reliability of measurement. In
contrast, by shifting the central tendency measure, systematic error reduces the validity of
measurement. Validity concerns are far more serious problems in measurement than reliability
concerns, because an invalid measure is probably measuring a different construct than what we
intended, and hence validity problems cast serious doubts on findings derived from statistical
analysis.
Note that reliability is a ratio or a fraction that captures how close the true score is
relative to the observed score. Hence, reliability can be expressed as:
var(T) / var(X) = var(T) / [ var(T) + var(E) ]
If var(T) = var(X), then the true score has the same variability as the observed score, and the
reliability is 1.0.
S c a l e R e l i a b i l i t y a n d V a l i d i t y | 63
An Integrated Approach to Measurement Validation
A complete and adequate assessment of validity must include both theoretical and
empirical approaches. As shown in Figure 7.4, this is an elaborate multi-step process that must
take into account the different types of scale reliability and validity.
Figure 7.4. An integrated approach to measurement validation
The integrated approach starts in the theoretical realm. The first step is conceptualizing
the constructs of interest. This includes defining each construct and identifying their
constituent domains and/or dimensions. Next, we select (or create) items or indicators for each
construct based on our conceptualization of these construct, as described in the scaling
procedure in Chapter 5. A literature review may also be helpful in indicator selection. Each
item is reworded in a uniform manner using simple and easy-to-understand text. Following
this step, a panel of expert judges (academics experienced in research methods and/or a
representative set of target respondents) can be employed to examine each indicator and
conduct a Q-sort analysis. In this analysis, each judge is given a list of all constructs with their
conceptual definitions and a stack of index cards listing each indicator for each of the construct
measures (one indicator per index card). Judges are then asked to independently read each
index card, examine the clarity, readability, and semantic meaning of that item, and sort it with
the construct where it seems to make the most sense, based on the construct definitions
provided. Inter-rater reliability is assessed to examine the extent to which judges agreed with
their classifications. Ambiguous items that were consistently missed by many judges may be
reexamined, reworded, or dropped. The best items (say 10-15) for each construct are selected
for further analysis. Each of the selected items is reexamined by judges for face validity and
content validity. If an adequate set of items is not achieved at this stage, new items may have to
be created based on the conceptual definition of the intended construct. Two or three rounds of
Q-sort may be needed to arrive at reasonable agreement between judges on a set of items that
best represents the constructs of interest.
Next, the validation procedure moves to the empirical realm. A research instrument is
created comprising all of the refined construct items, and is administered to a pilot test group of
representative respondents from the target population. Data collected is tabulated and
Add Your Gadget Here
HIGHLIGHT OF THE WEEK
-
Survey Research Survey research a research method involving the use of standardized questionnaires or interviews to collect data about peop...
-
Inter-rater reliability. Inter-rater reliability, also called inter-observer reliability, is a measure of consistency between two or more i...
-
discriminant validity is exploratory factor analysis. This is a data reduction technique which aggregates a given set of items to a smalle...
-
can estimate parameters of this line, such as its slope and intercept from the GLM. From highschool algebra, recall that straight lines can...
-
Positivist Case Research Exemplar Case research can also be used in a positivist manner to test theories or hypotheses. Such studies are ra...
-
Quantitative Analysis: Descriptive Statistics Numeric data collected in a research project can be analyzed quantitatively using statistical...
-
Probability Sampling Probability sampling is a technique in which every unit in the population has a chance (non-zero probability) of being...
-
Experimental Research Experimental research, often considered to be the “gold standard” in research designs, is one of the most rigorous of...
-
Bivariate Analysis Bivariate analysis examines how two variables are related to each other. The most common bivariate statistic is the biva...
-
Case Research Case research, also called case study, is a method of intensively studying a phenomenon over time within its natural setting ...
Sunday, 13 March 2016
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment